Optimization of news dissemination push mode by intelligent edge computing technology for deep learning

Author:

DeGe JiLe,Sang Sina

Abstract

AbstractThe Internet era is an era of information explosion. By 2022, the global Internet users have reached more than 4 billion, and the social media users have exceeded 3 billion. People face a lot of news content every day, and it is almost impossible to get interesting information by browsing all the news content. Under this background, personalized news recommendation technology has been widely used, but it still needs to be further optimized and improved. In order to better push the news content of interest to different readers, users' satisfaction with major news websites should be further improved. This study proposes a new recommendation algorithm based on deep learning and reinforcement learning. Firstly, the RL algorithm is introduced based on deep learning. Deep learning is excellent in processing large-scale data and complex pattern recognition, but it often faces the challenge of low sample efficiency when it comes to complex decision-making and sequential tasks. While reinforcement learning (RL) emphasizes learning optimization strategies through continuous trial and error through interactive learning with the environment. Compared with deep learning, RL is more suitable for scenes that need long-term decision-making and trial-and-error learning. By feeding back the reward signal of the action, the system can better adapt to the unknown environment and complex tasks, which makes up for the relative shortcomings of deep learning in these aspects. A scenario is applied to an action to solve the sequential decision problem in the news dissemination process. In order to enable the news recommendation system to consider the dynamic changes in users' interest in news content, the Deep Deterministic Policy Gradient algorithm is applied to the news recommendation scenario. Opposing learning complements and combines Deep Q-network with the strategic network. On the basis of fully summarizing and thinking, this paper puts forward the mode of intelligent news dissemination and push. The push process of news communication information based on edge computing technology is proposed. Finally, based on Area Under Curve a Q-Leaning Area Under Curve for RL models is proposed. This indicator can measure the strengths and weaknesses of RL models efficiently and facilitates comparing models and evaluating offline experiments. The results show that the DDPG algorithm improves the click-through rate by 2.586% compared with the conventional recommendation algorithm. It shows that the algorithm designed in this paper has more obvious advantages in accurate recommendation by users. This paper effectively improves the efficiency of news dissemination by optimizing the push mode of intelligent news dissemination. In addition, the paper also deeply studies the innovative application of intelligent edge technology in news communication, which brings new ideas and practices to promote the development of news communication methods. Optimizing the push mode of intelligent news dissemination not only improves the user experience, but also provides strong support for the application of intelligent edge technology in this field, which has important practical application prospects.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3