Absolute and relative disparity mechanisms revealed by an equivalent noise analysis

Author:

Ding Jian,Lu Hilary H.,Levi Dennis M.

Abstract

AbstractThe precision of stereopsis and vergence are ultimately limited by internal binocular disparity noise. Here we propose an equivalent noise model with both global and local internal disparity noises to provide a unified explanation of both absolute and relative disparity thresholds. To test this model, we developed a psychophysical procedure to measure the equivalent internal disparity noise by adding external disparity noise to random-Gabor-patch stereograms. We used the method of constant stimuli to measure the minimum and maximum disparity thresholds (Dmin and Dmax) for both absolute and relative disparity. Consistent with previous studies, we found that Dmin thresholds are substantially worse for absolute disparity than for relative disparity. We tested three relative disparity mechanisms: (1) the difference between the monocular separations of targets projecting to the two eyes; (2) the direct measurement of relative disparity; and (3) the difference of absolute disparities of targets. Computing the difference of absolute disparities when detecting relative disparity, Mechanism 3 cancels global noise, resulting in a much lower relative Dmin threshold, and provides a reasonable fit to the experimental data. We also found that the presence of as much as 2400 arcsec of external disparity noise does not appear to affect the Dmax threshold. This observation suggests that Dmax is implicated in a mechanism that disregards the disparity variance of individual items, relying instead on the average disparity across all items, supporting the depth model proposed in our previous study (Ding & Levi, 2021), which posits distinct mechanisms governing Dmin and Dmax thresholds.

Funder

National Eye Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3