A publication-wide association study (PWAS), historical language models to prioritise novel therapeutic drug targets

Author:

Narganes-Carlón David,Crowther Daniel J.,Pearson Ewan R.

Abstract

AbstractMost biomedical knowledge is published as text, making it challenging to analyse using traditional statistical methods. In contrast, machine-interpretable data primarily comes from structured property databases, which represent only a fraction of the knowledge present in the biomedical literature. Crucial insights and inferences can be drawn from these publications by the scientific community. We trained language models on literature from different time periods to evaluate their ranking of prospective gene-disease associations and protein–protein interactions. Using 28 distinct historical text corpora of abstracts published between 1995 and 2022, we trained independent Word2Vec models to prioritise associations that were likely to be reported in future years. This study demonstrates that biomedical knowledge can be encoded as word embeddings without the need for human labelling or supervision. Language models effectively capture drug discovery concepts such as clinical tractability, disease associations, and biochemical pathways. Additionally, these models can prioritise hypotheses years before their initial reporting. Our findings underscore the potential for extracting yet-to-be-discovered relationships through data-driven approaches, leading to generalised biomedical literature mining for potential therapeutic drug targets. The Publication-Wide Association Study (PWAS) enables the prioritisation of under-explored targets and provides a scalable system for accelerating early-stage target ranking, irrespective of the specific disease of interest.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3