Author:
Khodamorady Minoo,Bahrami Kiumars
Abstract
AbstractIn this study, new magnetic nanocomposites with shell core structure with different molar ratios of ZnS-CdS were synthesized and their photocatalytic activity in dye removal from synthetic and real effluents in the presence of mercury high pressure lamp as a visible light source was investigated. Optimal photocatalyst with molar ratio of ZnS-CdS 0.25:0.75 showed the best performance in dye removal. Based on the particle distribution histogram of Fe3O4@BNPs@ZnS-CdS (ZnS/CdS: 0.25:0.75), particles with 60–100 nm have the highest abundance. According to the DRS results, hybridization of zinc sulfide with cadmium sulfide reduced the gap and as a result, light absorption was successfully extended to the visible area. The PL results confirm that the optimal photocatalyst (Fe3O4@BNPs@ZnS-CdS) has the lowest electron–hole recombination compared to Fe3O4@BNPs@ZnS and Fe3O4@BNPs@CdS. It should be noted that according to the DLS results, the charge on the optical photocomposite surface is negative at all acidic, alkaline and neutral pHs. One of the significant advantages in this study is the use of high-pressure mercury lamps as a light source, so that these lamps are very economical in terms of economy and also have a long life and excellent efficiency. The optimal photocatalyst not only showed excellent photocatalytic activity for the removal of methylene blue (96.6%) and methyl orange (70.9%) but also for the dye removal of textile effluents (Benton 98.5% and dark olive 100%). Introduced magnetic heterostructures are suitable options for dye removal from textile and spinning wastewaters.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献