Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor

Author:

Watanabe ReikoORCID,Ohashi Rikiya,Esaki TsuyoshiORCID,Kawashima Hitoshi,Natsume-Kitatani Yayoi,Nagao Chioko,Mizuguchi KenjiORCID

Abstract

AbstractPrediction of pharmacokinetic profiles of new chemical entities is essential in drug development to minimize the risks of potential withdrawals. The excretion of unchanged compounds by the kidney constitutes a major route in drug elimination and plays an important role in pharmacokinetics. Herein, we created in silico prediction models of the fraction of drug excreted unchanged in the urine (fe) and renal clearance (CLr), with datasets of 411 and 401 compounds using freely available software; notably, all models require chemical structure information alone. The binary classification model for fe demonstrated a balanced accuracy of 0.74. The two-step prediction system for CLr was generated using a combination of the classification model to predict excretion-type compounds and regression models to predict the CLr value for each excretion type. The accuracies of the regression models increased upon adding a descriptor, which was the observed and predicted fraction unbound in plasma (fu,p); 78.6% of the samples in the higher range of renal clearance fell within 2-fold error with predicted fu,p value. Our prediction system for renal excretion is freely available to the public and can be used as a practical tool for prioritization and optimization of compound synthesis in the early stage of drug discovery.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3