Abstract
AbstractEnvironmental heterogeneity resulting from human-modified landscapes can increase intraspecific trait variation. However, less known is whether such phenotypic variation is driven by plastic or adaptive responses to local environments. Here, we study five bumble bee (Apidae: Bombus) species across an urban gradient in the greater Saint Louis, Missouri region in the North American Midwest and ask: (1) Can urban environments induce intraspecific spatial structuring of body size, an ecologically consequential functional trait? And, if so, (2) is this body size structure the result of plasticity or adaptation? We additionally estimate genetic diversity, inbreeding, and colony density of these species—three factors that affect extinction risk. Using ≥ 10 polymorphic microsatellite loci per species and measurements of body size, we find that two of these species (Bombus impatiens, Bombus pensylvanicus) exhibit body size clines across the urban gradient, despite a lack of population genetic structure. We also reaffirm reports of low genetic diversity in B. pensylvanicus and find evidence that Bombus griseocollis, a species thought to be thriving in North America, is inbred in the greater Saint Louis region. Collectively, our results have implications for conservation in urban environments and suggest that plasticity can cause phenotypic clines across human-modified landscapes.
Funder
Whitney R. Harris World Ecology Center
University of Missouri
Webster Groves Nature Study Society
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).
2. IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
3. Vitousek, P. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
4. Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
5. Hale, R. & Swearer, S. E. Ecological traps: Current evidence and future directions. Proc. R. Soc. B Biol. Sci. 283, 1–8 (2016).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献