Adsorption characteristics of nickel (II) from aqueous solutions by Zeolite Scony Mobile-5 (ZSM-5) incorporated in sodium alginate beads

Author:

Hellal Mohamed S.,Rashad Ahmed M.,Kadimpati Kishore K.,Attia Sayed K.,Fawzy Mariam E.

Abstract

AbstractNickel, a prevalent metal in the ecosystem, is released into the environment through various anthropogenic activities, leading to adverse effects. This research explored utilizing zeolite scony mobile-5 (ZSM-5) nanoparticles encapsulated in sodium alginate (SA) for nickel (II) removal from aqueous solutions. The adsorption characteristics of SA/ZSM-5 were examined concerning contact duration, initial metal ion concentration, pH level, temperature, and sorbent dosage. The findings revealed that a rising pH reduced Ni (II) uptake by the sorbent while increasing the Ni (II) concentration from 25 to 100 mg L−1 led to a decrease in removal percentage from 91 to 80% under optimal conditions. Furthermore, as sorbent dosage increased from 4 to 16 g L−1, uptake capacity declined from 9.972 to 1.55 mg g−1. Concurrently, SA/ZSM-5 beads' Ni (II) sorption capacity decreased from 96.12 to 59.14% with a temperature increase ranging from 25 to 55 °C. The Ni (II) sorption data on SA/ZSM-5 beads are aptly represented by Langmuir and Freundlich equilibrium isotherm models. Moreover, a second-order kinetic model characterizes the adsorption kinetics of Ni (II) on the SA/ZSM-5 beads. A negative free energy change (ΔG°) demonstrates that the process is both viable and spontaneous. The negative enthalpy values indicate an exothermic nature at the solid–liquid interface while negative entropy values suggest a decrease in randomness. In conclusion, this novel adsorbent exhibits promise for removing nickel from aqueous solutions and could potentially be employed in small-scale industries under similar conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3