Author:
Kang Sung Wan,Lee Ji-young,Kang Ok-Ju,Kim Yong-Man,Choi Eun Kyung,Lee Shin-Wha
Abstract
AbstractAlthough immunotherapy has not yet been as successful in ovarian cancer (OC), it remains a potential therapeutic strategy. Preclinical models of OC are necessary to evaluate the efficacy of immuno-oncology (IO) drugs targeting human immune components but have been underutilized. Developing mouse models with a humanized (Hu) immune system can help understand the human immune response to IO drugs which have demonstrated limited effectiveness in OC patients. We established OC xenograft Hu-mouse models by intraperitoneally injecting luciferase-expressing SKOV-3 Luc and OVCAR-3 Luc OC cells into CD34+ Hu-mice. Tumor growth was monitored through bioluminescence imaging (BLI). In the SKOV-3 Luc Hu-mouse model, we assessed the efficacy of PD-1 blockade with pembrolizumab. We observed the presence of human lymphocyte and myeloid cell subsets within the tumors, lymph nodes, blood, and spleens in these models. Notably, these tumors exhibited a high prevalence of tumor-infiltrating macrophages. Furthermore, we identified HDAC class I target genes, and genes associated with epithelial-mesenchymal transition (EMT) and fibroblasts in the tumors of Hu-mice treated with pembrolizumab. Our xenograft Hu-mouse model of OC provides a valuable tool for investigating the efficacy of IO drugs. The insights gained from this model offer useful information to explore potential mechanisms associated with unresponsive anti-PD-1 treatment in OC.
Funder
Korea Health Industry Development Institute
Publisher
Springer Science and Business Media LLC