Evaluation of diffuse reflectance spectroscopy for predicting age, species, and cuticular resistance of Anopheles gambiae s.l under laboratory conditions

Author:

Pazmiño-Betancourth Mauro,Ochoa-Gutiérrez Victor,Ferguson Heather M.,González-Jiménez Mario,Wynne Klaas,Baldini Francesco,Childs David

Abstract

AbstractMid-infrared spectroscopy (MIRS) combined with machine learning analysis has shown potential for quick and efficient identification of mosquito species and age groups. However, current technology to collect spectra is destructive to the sample and does not allow targeting specific tissues of the mosquito, limiting the identification of other important biological traits such as insecticide resistance. Here, we assessed the use of a non-destructive approach of MIRS for vector surveillance, micro diffuse reflectance spectroscopy (µDRIFT) using mosquito legs to identify species, age and cuticular insecticide resistance within the Anopheles gambiae s.l. complex. These mosquitoes are the major vectors of malaria in Africa and the focus on surveillance in malaria control programs. Legs required significantly less scanning time and showed more spectral consistence compared to other mosquito tissues. Machine learning models were able to identify An. gambiae and An. coluzzii with an accuracy of 0.73, two ages groups (3 and 10 days old) with 0.77 accuracy and we obtained accuracy of 0.75 when identifying cuticular insecticide resistance. Our results highlight the potential of different mosquito tissues and µDRIFT as tools for biological trait identification on mosquitoes that transmit malaria. These results can guide new ways of identifying mosquito traits which can help the creation of innovative surveillance programs by adapting new technology into mosquito surveillance and control tools.

Funder

Lord Kelvin Adam Smith Scholarship

Medical Research Council

Bill and Melinda Gates Foundation

HORIZON EUROPE European Research Council

Academy Medical Sciences Springboard Award

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3