A network analysis of early arthropod evolution and the potential of the primitive

Author:

Ostachuk Agustín

Abstract

AbstractIt is often thought that the primitive is simpler, and that the complex is generated from the simple by some process of self-assembly or self-organization, which ultimately consists of the spontaneous and fortuitous collision of elementary units. This idea is included in the Darwinian theory of evolution, to which is added the competitive mechanism of natural selection. To test this view, we studied the early evolution of arthropods. Twelve groups of arthropods belonging to the Burgess Shale, Orsten Lagerstätte, and extant primitive groups were selected, their external morphology abstracted and codified in the language of network theory. The analysis of these networks through different network measures (network parameters, topological descriptors, complexity measures) was used to carry out a Principal Component Analysis (PCA) and a Hierarchical Cluster Analysis (HCA), which allowed us to obtain an evolutionary tree with distinctive/novel features. The analysis of centrality measures revealed that these measures decreased throughout the evolutionary process, and led to the creation of the concept of evolutionary developmental potential. This potential, which measures the capacity of a morphological unit to generate changes in its surroundings, is concomitantly reduced throughout the evolutionary process, and demonstrates that the primitive is not simple but has a potential that unfolds during this process. This means for us the first empirical evolutionary evidence of our theory of evolution as a process of unfolding.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference132 articles.

1. Kant, I. Critique of the Power of Judgment (Cambridge University Press, 2000).

2. Lucretius, T. C. On the Nature of Things (Hackett Publishing Company, 2001).

3. Ashby, W. R. Principles of the self-organizing dynamic system. J. Gen. Psychol. 37, 125–128 (1947).

4. Foerster, H. V. On self-organizing systems and their environments. In Self-Organizing Systems (eds Yovits, M. C. & Cameron, S.) 31–50 (Pergamon Press, 1960).

5. Atlan, H. L’organisation biologique et la théorie de l’information (Hermann, 1972).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3