Brown rats and house mice eavesdrop on each other’s volatile sex pheromone components

Author:

Varner Elana,Jackson Hanna,Mahal Manveer,Takács Stephen,Gries Regine,Gries Gerhard

Abstract

AbstractMammalian pheromones often linger in the environment and thus are particularly susceptible to interceptive eavesdropping, commonly understood as a one-way dyadic interaction, where prey sense and respond to the scent of a predator. Here, we tested the “counterespionage” hypothesis that predator and prey co-opt each other’s pheromone as a cue to locate prey or evade predation. We worked with wild brown rats (predator of mice) and wild house mice (prey of brown rats) as model species, testing their responses to pheromone-baited traps at infested field sites. The treatment trap in each of two trap pairs per replicate received sex attractant pheromone components (including testosterone) of male mice or male rats, whereas corresponding control traps received only testosterone, a pheromone component shared between mouse and rat males. Trap pairs disseminating male rat pheromone components captured 3.05 times fewer mice than trap pairs disseminating male mouse pheromone components, and no female mice were captured in rat pheromone-baited traps, indicating predator aversion. Indiscriminate captures of rats in trap pairs disseminating male rat or male mouse pheromone components, and fewer captures of rats in male mouse pheromone traps than in (testosterone-only) control traps indicate that rats do eavesdrop on the male mouse sex pheromone but do not exploit the information for mouse prey location. The counterespionage hypothesis is supported by trap catch data of both mice and rats but only the mice data are in keeping with our predictions for motive of the counterespionage.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3