Capsule robot pose and mechanism state detection in ultrasound using attention-based hierarchical deep learning

Author:

Liu Xiaoyun,Esser Daniel,Wagstaff Brandon,Zavodni Anna,Matsuura Naomi,Kelly Jonathan,Diller Eric

Abstract

AbstractIngestible robotic capsules with locomotion capabilities and on-board sampling mechanism have great potential for non-invasive diagnostic and interventional use in the gastrointestinal tract. Real-time tracking of capsule location and operational state is necessary for clinical application, yet remains a significant challenge. To this end, we propose an approach that can simultaneously determine the mechanism state and in-plane 2D pose of millimeter capsule robots in an anatomically representative environment using ultrasound imaging. Our work proposes an attention-based hierarchical deep learning approach and adapts the success of transfer learning towards solving the multi-task tracking problem with limited dataset. To train the neural networks, we generate a representative dataset of a robotic capsule within ex-vivo porcine stomachs. Experimental results show that the accuracy of capsule state classification is 97%, and the mean estimation errors for orientation and centroid position are 2.0 degrees and 0.24 mm (1.7% of the capsule’s body length) on the hold-out test set. Accurate detection of the capsule while manipulated by an external magnet in a porcine stomach and colon is also demonstrated. The results suggest our proposed method has the potential for advancing the wireless capsule-based technologies by providing accurate detection of capsule robots in clinical scenarios.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Helical Propulsion in Low-Re Numbers with Near-Zero Angle of Attack;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. USMicroMagSet: Using Deep Learning Analysis to Benchmark the Performance of Microrobots in Ultrasound Images;IEEE Robotics and Automation Letters;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3