A fine pore-preserved deep neural network for porosity analytics of a high burnup U-10Zr metallic fuel

Author:

Wang Haotian,Xu Fei,Cai Lu,Salvato Daniele,Di Lemma Fidelma Giulia,Capriotti Luca,Yao Tiankai,Xian Min

Abstract

AbstractU-10 wt.% Zr (U-10Zr) metallic fuel is the leading candidate for next-generation sodium-cooled fast reactors. Porosity is one of the most important factors that impacts the performance of U-10Zr metallic fuel. The pores generated by the fission gas accumulation can lead to changes in thermal conductivity, fuel swelling, Fuel-Cladding Chemical Interaction (FCCI) and Fuel-Cladding Mechanical Interaction (FCMI). Therefore, it is crucial to accurately segment and analyze porosity to understand the U-10Zr fuel system to design future fast reactors. To address the above issues, we introduce a workflow to process and analyze multi-source Scanning Electron Microscope (SEM) image data. Moreover, an encoder-decoder-based, deep fully convolutional network is proposed to segment pores accurately by integrating the residual unit and the densely-connected units. Two SEM 250 × field of view image datasets with different formats are utilized to evaluate the new proposed model’s performance. Sufficient comparison results demonstrate that our method quantitatively outperforms two popular deep fully convolutional networks. Furthermore, we conducted experiments on the third SEM 2500 × field of view image dataset, and the transfer learning results show the potential capability to transfer the knowledge from low-magnification images to high-magnification images. Finally, we use a pre-trained network to predict the pores of SEM images in the whole cross-sectional image and obtain quantitative porosity analysis. Our findings will guide the SEM microscopy data collection efficiently, provide a mechanistic understanding of the U-10Zr fuel system and bridge the gap between advanced characterization to fuel system design.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3