Numerical study of the effect of channel aspect ratio on particle focusing in acoustophoretic devices

Author:

Spigarelli L.,Vasile N. S.,Pirri C. F.,Canavese G.

Abstract

Abstract Acoustophoretic microfluidic devices are promising non-contact and high-throughput tools for particle manipulation. Although the effectiveness of this technique has been widely demonstrated for applications based on micrometer-sized particles, the manipulation and focusing of sub-micrometer ones is challenging due to the presence of acoustic streaming. In this article, our study has the aim to investigate and understand which geometrical parameters could be changed to limit the acoustic streaming effect. We numerically study the well-known rectangular cross section of a microfluidic channel and perform a parametric study of the aspect ratio for several particle sizes. The efficiency of the focusing, is explored for different sized particles in order to identify a trend for which the acoustic streaming does not drastically influence the focusing motion of the particles. The possibility to efficiently separate different solid components in liquid suspensions, i.e. the whole blood, is crucial for all applications that require a purified medium such as plasmapheresis or an increase of the concentration of specific subpopulation as the outcome, such as proteomics, cancer biomarker detections and extracellular vesicles separation.

Funder

Regione Piemonte

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3