Transcriptome analysis of miRNA and mRNA in the livers of pigs with highly diverged backfat thickness

Author:

Xing Kai,Zhao Xitong,Ao Hong,Chen Shaokang,Yang Ting,Tan Zhen,Wang Yuan,Zhang Fengxia,Liu Yibing,Ni HeMin,Guo Yong,Hou ZhuochengORCID,Wang Chuduan

Abstract

AbstractFat deposition is very important in pig production, and its mechanism is not clearly understood. MicroRNAs (miRNAs) play critical roles in fat deposition and energy metabolism. In the current study, we investigated the mRNA and miRNA transcriptome in the livers of Landrace pigs with extreme backfat thickness to explore miRNA-mRNA regulatory networks related to lipid deposition and metabolism. A comparative analysis of liver mRNA and miRNA transcriptomes from pigs (four pigs per group) with extreme backfat thickness was performed. We identified differentially expressed genes from RNA-seq data using a Cufflinks pipeline. Seventy-one differentially expressed genes (DEGs), including twenty-eight well annotated on the porcine reference genome genes, were found. The upregulation genes in pigs with higher backfat thickness were mainly involved in fatty acid synthesis, and included fatty acid synthase (FASN), glucokinase (GCK), phosphoglycerate dehydrogenase (PHGDH), and apolipoprotein A4 (APOA4). Cytochrome P450, family 2, subfamily J, polypeptide 34 (CYP2J34) was lower expressed in pigs with high backfat thickness, and is involved in the oxidation of arachidonic acid. Moreover, 13 differentially expressed miRNAs were identified. Seven miRNAs were associated with fatty acid synthesis, lipid metabolism, and adipogenic differentiation. Based on comprehensive analysis of the transcriptome of both mRNAs and miRNAs, an important regulatory network, in which six DEGs could be regulated by differentially expressed miRNAs, was established for fat deposition. The negative correlate in the regulatory network including, miR-545-5p and GRAMD3, miR-338 and FASN, and miR-127, miR-146b, miR-34c, miR-144 and THBS1 indicate that direct suppressive regulation may be involved in lipid deposition and energy metabolism. Based on liver mRNA and miRNA transcriptomes from pigs with extreme backfat thickness, we identified 28 differentially expressed genes and 13 differentially expressed miRNAs, and established an important miRNA-mRNA regulatory network. This study provides new insights into the molecular mechanisms that determine fat deposition in pigs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3