Classification of brain tumours in MR images using deep spatiospatial models

Author:

Chatterjee Soumick,Nizamani Faraz Ahmed,Nürnberger Andreas,Speck Oliver

Abstract

AbstractA brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning, and magnetic resonance imaging is the principal imaging modality for diagnosing brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models, and the improvements in the model architectures yield better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating one spatial dimension separately or by considering the slices as a sequence of images over time, spatiotemporal models can be employed as “spatiospatial” models for this task. These models have the capabilities of learning specific spatial and temporal relationships while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.9345 and a test accuracy of 96.98%, while at the same time being the model with the least computational cost.

Funder

European Structural and Investment Funds

Otto-von-Guericke-Universität Magdeburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review of Real-Time Deep Learning Methods for Image-Based Cancer Diagnostics;Journal of Multidisciplinary Healthcare;2024-09

2. An Enhanced Approach to Intelligent Computer-Assisted Localization of Liver Tumor on Computed Tomography Images;SN Computer Science;2024-08-22

3. Revolutionizing Medical Diagnostics: Exploring Creativity in AI for Biomedical Image Analysis;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

4. Assessing glioma grading with self-attention: comparative analysis of the diagnostic potential of different MRI sequences;International Journal of System Assurance Engineering and Management;2024-06-26

5. Deep Learning Models to Predict Brain Cancer Grade Through MRI Analysis;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3