Evidences for the augmented Cd(II) biosorption by Cd(II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium

Author:

Bhattacharyya Kaustav,Bhattacharjee Neelanjan,Ganguly Subhadeep

Abstract

AbstractCadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni–Cd batteries, pigments, plating and plastics. Cadmium levels are increased in water owing to the use and disposal of cadmium containing ingredients. Water draining from a landfill may contain higher cadmium levels. The authors have tried to evaluate the optimized nutritional conditions for the optimal growth and Cd(II) remediation capacity for a developed Cd(II) resistant yeast strain named Candida tropicalis XTA 1874 isolated from contaminated water-body in West Bengal. By analyzing the optimization conditions, a synthetic medium was developed and the composition has been given in the main text. The strain showed much better Cd(II) adsorption capacity under the optimized nutritional conditions (Mean removal = 88.077 ± 0.097%).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adsorptive removal of cadmium from aqueous medium-a critical review;Physics and Chemistry of the Earth, Parts A/B/C;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3