Improving difficult direct laryngoscopy prediction using deep learning and minimal image analysis: a single-center prospective study

Author:

Kim Jong-Ho,Jung Hee-Sun,Lee So-Eun,Hou Jong-Uk,Kwon Young-Suk

Abstract

AbstractAccurate prediction of difficult direct laryngoscopy (DDL) is essential to ensure optimal airway management and patient safety. The present study proposed an AI model that would accurately predict DDL using a small number of bedside pictures of the patient’s face and neck taken simply with a smartphone. In this prospective single-center study, adult patients scheduled for endotracheal intubation under general anesthesia were included. Patient pictures were obtained in frontal, lateral, frontal-neck extension, and open mouth views. DDL prediction was performed using a deep learning model based on the EfficientNet-B5 architecture, incorporating picture view information through multitask learning. We collected 18,163 pictures from 3053 patients. After under-sampling to achieve a 1:1 image ratio of DDL to non-DDL, the model was trained and validated with a dataset of 6616 pictures from 1283 patients. The deep learning model achieved a receiver operating characteristic area under the curve of 0.81–0.88 and an F1-score of 0.72–0.81 for DDL prediction. Including picture view information improved the model’s performance. Gradient-weighted class activation mapping revealed that neck and chin characteristics in frontal and lateral views are important factors in DDL prediction. The deep learning model we developed effectively predicts DDL and requires only a small set of patient pictures taken with a smartphone. The method is practical and easy to implement.

Funder

the First Research in Lifetime Program of the National Research Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3