Author:
Ganegoda Naleen Chaminda,Wijaya Karunia Putra,Amadi Miracle,Erandi K. K. W. Hasitha,Aldila Dipo
Abstract
AbstractCOVID-19 pandemic continues to obstruct social lives and the world economy other than questioning the healthcare capacity of many countries. Weather components recently came to notice as the northern hemisphere was hit by escalated incidence in winter. This study investigated the association between COVID-19 cases and two components, average temperature and relative humidity, in the 16 states of Germany. Three main approaches were carried out in this study, namely temporal correlation, spatial auto-correlation, and clustering-integrated panel regression. It is claimed that the daily COVID-19 cases correlate negatively with the average temperature and positively with the average relative humidity. To extract the spatial auto-correlation, both global Moran’s $${\mathscr {I}}$$
I
and global Geary’s $${\mathscr {C}}$$
C
were used whereby no significant difference in the results was observed. It is evident that randomness overwhelms the spatial pattern in all the states for most of the observations, except in recent observations where either local clusters or dispersion occurred. This is further supported by Moran’s scatter plot, where states’ dynamics to and fro cold and hot spots are identified, rendering a traveling-related early warning system. A random-effects model was used in the sense of case-weather regression including incidence clustering. Our task is to perceive which ranges of the incidence that are well predicted by the existing weather components rather than seeing which ranges of the weather components predicting the incidence. The proposed clustering-integrated model associated with optimal barriers articulates the data well whereby weather components outperform lag incidence cases in the prediction. Practical implications based on marginal effects follow posterior to model diagnostics.
Funder
Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia
Publisher
Springer Science and Business Media LLC
Reference100 articles.
1. Belser, J. A., Eckert, A. M., Tumpey, T. M. & Maines, T. R. Complexities in ferret influenza virus pathogenesis and transmission models. Microbiol. Mol. Biol. Rev. 80, 733–744 (2016).
2. Storch, G. A. Diagnostic virology. Clin. Infect. Dis. 31, 739–751 (2000).
3. Steinmeyer, S. H., Wilke, C. O. & Pepin, K. M. Methods of modelling viral disease dynamics across the within- and between-host scales: The impact of virus dose on host population immunity. Philos. Trans. R. Soc. B Biol. Sci. 365, 1931–1941 (2010).
4. Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).
5. World Health Organization. Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (2020). Accessed 19 December 2020.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献