Peripheral natural killer cells and myeloid-derived suppressor cells correlate with anti-PD-1 responses in non-small cell lung cancer

Author:

Youn Je-In,Park Su-Myeong,Park Seyeon,Kim Gamin,Lee Hee-Jae,Son Jimin,Hong Min Hee,Ghaderpour Aziz,Baik Bumseo,Islam Jahirul,Choi Ji-Woong,Lee Eun-Young,Kim Hang-Rae,Seo Sang-Uk,Paik Soonmyung,Yoon Hong In,Jung Inkyung,Xin Chun-Feng,Jin Hyun-Tak,Cho Byoung Chul,Seong Seung-Yong,Ha Sang-Jun,Kim Hye Ryun

Abstract

AbstractInhibition of immune checkpoint proteins like programmed death 1 (PD-1) is a promising therapeutic approach for several cancers, including non-small cell lung cancer (NSCLC). Although PD-1 ligand (PD-L1) expression is used to predict anti-PD-1 therapy responses in NSCLC, its accuracy is relatively less. Therefore, we sought to identify a more accurate predictive blood biomarker for evaluating anti-PD-1 response. We evaluated the frequencies of T cells, B cells, natural killer (NK) cells, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), mononuclear myeloid-derived suppressor cells (M-MDSCs), and Lox-1+ PMN-MDSCs in peripheral blood samples of 62 NSCLC patients before and after nivolumab treatment. Correlation of immune-cell population frequencies with treatment response, progression-free survival, and overall survival was also determined. After the first treatment, the median NK cell percentage was significantly higher in responders than in non-responders, while the median Lox-1+ PMN-MDSC percentage showed the opposite trend. NK cell frequencies significantly increased in responders but not in non-responders. NK cell frequency inversely correlated with that of Lox-1+ PMN-MDSCs after the first treatment cycle. The NK cell-to-Lox-1+ PMN-MDSC ratio (NMR) was significantly higher in responders than in non-responders. Patients with NMRs ≥ 5.75 after the first cycle had significantly higher objective response rates and longer progression-free and overall survival than those with NMRs <5.75. NMR shows promise as an early predictor of response to further anti-PD-1 therapy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3