Artificial neural network model for predicting changes in ion channel conductance based on cardiac action potential shapes generated via simulation

Author:

Jeong Da Un,Lim Ki Moo

Abstract

AbstractMany studies have revealed changes in specific protein channels due to physiological causes such as mutation and their effects on action potential duration changes. However, no studies have been conducted to predict the type of protein channel abnormalities that occur through an action potential (AP) shape. Therefore, in this study, we aim to predict the ion channel conductance that is altered from various AP shapes using a machine learning algorithm. We perform electrophysiological simulations using a single-cell model to obtain AP shapes based on variations in the ion channel conductance. In the AP simulation, we increase and decrease the conductance of each ion channel at a constant rate, resulting in 1,980 AP shapes and one standard AP shape without any changes in the ion channel conductance. Subsequently, we calculate the AP difference shapes between them and use them as the input of the machine learning model to predict the changed ion channel conductance. In this study, we demonstrate that the changed ion channel conductance can be predicted with high prediction accuracy, as reflected by an F1 score of 0.985, using only AP shapes and simple machine learning.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference30 articles.

1. Shih, H.-T. Anatomy of the action potential in the heart. Texas Heart Inst. J. 21, 30–41 (1994).

2. Jose, J., Mario, D., Justus, A., Omer, B. & Kalifa, J. Basic cardiac electrophysiology for the clinician. Cardiovascular Medicine (2009).

3. Atrial, G. Configurations of single. Cell 368, 525–544 (1985).

4. Hong, K. et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res. 68, 433–440 (2005).

5. Hasegawa, K. et al. A novel KCNQ1 missense mutation identified in a patient with juvenile-onset atrial fibrillation causes constitutively open I Ks channels. Heart Rhythm 11, 67–75 (2014).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3