Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI

Author:

Mazin Asim,Hawkins Samuel H.,Stringfield Olya,Dhillon Jasreman,Manley Brandon J.,Jeong Daniel K.,Raghunand Natarajan

Abstract

AbstractSarcomatoid differentiation in RCC (sRCC) is associated with a poor prognosis, necessitating more aggressive management than RCC without sarcomatoid components (nsRCC). Since suspected renal cell carcinoma (RCC) tumors are not routinely biopsied for histologic evaluation, there is a clinical need for a non-invasive method to detect sarcomatoid differentiation pre-operatively. We utilized unsupervised self-organizing map (SOM) and supervised Learning Vector Quantizer (LVQ) machine learning to classify RCC tumors on T2-weighted, non-contrast T1-weighted fat-saturated, contrast-enhanced arterial-phase T1-weighted fat-saturated, and contrast-enhanced venous-phase T1-weighted fat-saturated MRI images. The SOM was trained on 8 nsRCC and 8 sRCC tumors, and used to compute Activation Maps for each training, validation (3 nsRCC and 3 sRCC), and test (5 nsRCC and 5 sRCC) tumor. The LVQ classifier was trained and optimized on Activation Maps from the 22 training and validation cohort tumors, and tested on Activation Maps of the 10 unseen test tumors. In this preliminary study, the SOM-LVQ model achieved a hold-out testing accuracy of 70% in the task of identifying sarcomatoid differentiation in RCC on standard multiparameter MRI (mpMRI) images. We have demonstrated a combined SOM-LVQ machine learning approach that is suitable for analysis of limited mpMRI datasets for the task of differential diagnosis.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3