Novel use of online optimization in a mathematical model of COVID-19 to guide the relaxation of pandemic mitigation measures

Author:

Bianchin Gianluca,Dall’Anese Emiliano,Poveda Jorge I.,Jacobson David,Carlton Elizabeth J.,Buchwald Andrea G.

Abstract

AbstractSince early 2020, non-pharmaceutical interventions (NPIs)—implemented at varying levels of severity and based on widely-divergent perspectives of risk tolerance—have been the primary means to control SARS-CoV-2 transmission. This paper aims to identify how risk tolerance and vaccination rates impact the rate at which a population can return to pre-pandemic contact behavior. To this end, we developed a novel mathematical model and we used techniques from feedback control to inform data-driven decision-making. We use this model to identify optimal levels of NPIs across geographical regions in order to guarantee that hospitalizations will not exceed given risk tolerance thresholds. Results are shown for the state of Colorado, United States, and they suggest that: coordination in decision-making across regions is essential to maintain the daily number of hospitalizations below the desired limits; increasing risk tolerance can decrease the number of days required to discontinue NPIs, at the cost of an increased number of deaths; and if vaccination uptake is less than 70%, at most levels of risk tolerance, return to pre-pandemic contact behaviors before the early months of 2022 may newly jeopardize the healthcare system. The sooner we can acquire population-level vaccination of greater than 70%, the sooner we can safely return to pre-pandemic behaviors.

Funder

University of Colorado

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

1. Ozili, P. K. & Arun, T. Spillover of COVID-19: Impact on the Global Economy. https://doi.org/10.2139/ssrn.3562570 (2020).

2. Prime, H., Wade, M. & Browne, D. T. Risk and resilience in family well-being during the COVID-19 pandemic. Am. Psychol. 75, 631–643 (2020).

3. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927).

4. Franco, E. A feedback sir (fSIR) model highlights advantages and limitations of infection-based social distancing. Preprint at http://arxiv.org/abs/2004.13216 (2020).

5. Kiss, I. Z., Miller, J. C. & Simon, P. L. Mathematics of Epidemics on Networks (Springer, 2017).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3