Joint use of location and acceleration data reveals influences on transitions among habitats in wintering birds

Author:

VonBank Jay A.,Schafer Toryn L. J.,Cunningham Stephanie A.,Weegman Mitch D.,Link Paul T.,Kraai Kevin J.,Wikle Christopher K.,Collins Daniel P.,Cao Lei,Ballard Bart M.

Abstract

AbstractQuantifying relationships between animal behavior and habitat use is essential to understanding animal decision-making. High-resolution location and acceleration data allows unprecedented insights into animal movement and behavior. These data types allow researchers to study the complex linkages between behavioral plasticity and habitat distribution. We used a novel Markov model in a Bayesian framework to quantify the influence of behavioral state frequencies and environmental variables on transitions among landcover types through joint use of location and tri-axial accelerometer data. Data were collected from 56 greater white-fronted geese (Anser albifrons frontalis) across seven ecologically distinct winter regions over two years in midcontinent North America. We showed that goose decision-making varied across landcover types, ecoregions, and abiotic conditions, and was influenced by behavior. We found that time spent in specific behaviors explained variation in the probability of transitioning among habitats, revealing unique behavioral responses from geese among different habitats. Combining GPS and acceleration data allowed unique study of potential influences of an ongoing large-scale range shift in the wintering distribution of a migratory bird across midcontinent North America. We anticipate that behavioral adaptations among variable landscapes is a likely mechanism explaining goose use of highly variable ecosystems during winter in ways which optimize their persistence.

Funder

Texas Parks and Wildlife Department

University of Missouri

Louisiana Department of Wildlife and Fisheries

U.S. Fish and Wildlife Service

Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3