Electrical, optical, and electrochemical performances of phosphate-glasses-doped with ZnO and CuO and their composite with polyaniline

Author:

Mahani Ragab,Helmy A. Kh.,Fathi A. M.

Abstract

AbstractPhosphate-based glasses (PBG) with appropriate doping agents have been used as solid electrolytes in solid-state ionic devices. Therefore, more light was shed on the electrical, optical, and electrochemical behavior of the phosphate-based glasses (PBG), containing ZnO or CuO in the absence and existence of conductive polyaniline (PANI), since no publications are available concerning this work. The glass samples were prepared by the rapid quenching method, then mixing phosphate glass and polyaniline (PANI) with metal oxide (ZnO, CuO). They were characterized by different techniques; diffuse reflectance spectrophotometer (DRS), broadband dielectric spectrometer (BDS), cyclic voltammetry (CV), and charge–discharge techniques. In the DRS study, the direct and indirect band gap were calculated from Tauc’s relationship where CuO-doped glasses have higher values than ZnO-doped glasses. In the BDS study, the permittivity of all glass compositions decreased while AC conductivity increased with increasing frequency. AC conductivity of PBG doped with metal oxides and mixed with PANI exhibited semiconducting features (6.8 × 10–4 S/cm). Further, these composites exhibited lower loss tangent (0.11), and giant permittivity (186,000) compared to the pure PBG. Also, the electrochemical study exhibited that the composite with 7% CuO content has the highest specific capacitance value (82.3 F/g at 1.0 A/g) which increased to about 113% of its first cycle and then decreased to about 55% after 2500 cycles and finally increased again to 77% after 4500 cycles, indicating its good stability. The combination of optical, electrical, and electrochemical features of these composites suggests their use for energy generation and storage devices.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3