Dynamic response and failure characteristics of combined rocks under confining pressure

Author:

Ma Cong,Zhu Chuanjie,Zhou Jingxuan,Ren Jie,Yu Qi

Abstract

AbstractGas explosions or coal and gas outbursts can cause transient destruction of combined coal–rock, and the dynamic mechanical response of combined coal–rock masses plays a key role in accident failure, but we now know little about the dynamic mechanical responses of combined coal–rock. In this article, we selected three rocks (limestone, shale, sandstone) and two coals (bituminous coal and anthracite coal) to form combined coal–rock, and analyze their dynamic mechanical properties by using the SHPB system. We find that the dynamic compressive strength and elastic modulus of combined rock–coal are lower than the average value of single rock and coal, while the ultimate strain and strain rate of combined coal–rock are higher than the average values of single rock and coal. Compressive strength and elastic modulus of the combined body increase gradually with increasing confining pressure, and the strain decreases accordingly. The dynamic stress–strain curve demonstrates an obvious double-peak at high strain rate (85.55 s−1 and above in the present work), while there is no obvious double-peak of the curve at low strain rate. Dynamic compressive strength of combined coal–rock body increases significantly with increasing confining pressure at low strain rate, but it increases more smoothly at higher strain rate. The elastic modulus also increases with increasing confining pressure, and it seems to be stable as confining pressure increases at low strain rate. The ultimate strain decreases gradually with increasing confining pressure but more gently compared with that at low strain rate. Besides, longitudinal fractures of combined coal–rock bodies include penetrating fractures, partially penetrating fractures, and interrupted fractures stopped at the coal–rock interface. The dynamic mechanical response of combined coal–rock is of guiding significance for maintaining the stability of the roadway and formulating the support measures for the roadway.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3