Author:
Gerges Najib N.,Issa Camille A.,Khalil Nariman J.,Aintrazi Sarah
Abstract
AbstractConcrete, the construction industry’s most utilized construction material, has transformed the environment and the modern built-up lifestyle. Although concrete is a first-rate supplier to the carbon footprint, it is imperative for buildings to display sustainable characteristics. Scholars have explored techniques to lessen the carbon footprint and the way to put into effect strategic waste control plans in which waste is reused. This study explores the dual benefits wherein concrete ingredients are replaced through abandoned waste which reduces the unwanted waste materials that have a substantial carbon footprint and thus results in the recycling of waste as part of a sustainable economic system. In this study, timber ash is utilized as a partial substitute for sand and cement, crumb rubber and waste glass as a partial substitute for sand, recycled concrete, and waste glass as a substitute for gravel. Characteristics studies were done to check the influence of each waste replacement on the modulus of elasticity of concrete. More than sixty-five combinations of waste have been examined to attain the modulus of elasticity of concrete. A total of about 200 concrete cylinders were cast to provide at least three cylinders for each generated data point. Three different ASTM standards were utilized to determine the modulus of elasticity of each mix. Four mixes comprising of the combination of two waste materials and two mixes comprising of the combination of three waste materials replacing natural materials were determined to exhibit an equal or superior modulus of elasticity of the control mix of 25 GPa.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Meyer, C. Concrete materials and sustainable development in the United States. Struct. Eng. Int. 14(3), 203–207 (2004).
2. World Bank, WHAT A WASTE 2.0 A Global Snapshot of Solid Waste Management to 2050, https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html
3. Greenspec, Environmental Impacts of Concrete. Available: https://www.greenspec.co.uk/building-design/environmental-impacts-of-concrete/.
4. Gerges, N. N. et al. Eco-friendly optimum structural concrete mix design. Sustainability 14(14), 8660 (2022).
5. Sonibare, O. O., Adeniran, J. A. & Bello, I. S. Landfill air and odor emissions from an integrated waste management facility. J. Environ. Health Sci. Eng. 17(1), 13–28 (2019).