Microstructural, electrical and biological activity in $$\mathrm{Ca}_{10}(\mathrm{PO}_4)_6(\mathrm{OH})_2-\mathrm{Ba}_{0.5}\mathrm{Sr}_{0.5}\mathrm{TiO}_3$$ ceramic composites designed for tissue engineering applications

Author:

Das Apurba,Dobbidi Pamu,Bhardwaj Aman,Saxena Varun,Pandey Lalit M.

Abstract

AbstractThe article investigates electrically active ceramic composite of $$\mathrm{Ca}_{10}(\mathrm{PO}_4)_6(\mathrm{OH})_2$$ Ca 10 ( PO 4 ) 6 ( OH ) 2 (HAP) and $$\mathrm{Ba}_{0.5}\mathrm{Sr}_{0.5}\mathrm{TiO}_{3}$$ Ba 0.5 Sr 0.5 TiO 3 (BST) for biomedical applications. The study is a systematic blend of the materials science aspect of composites with a special focus on the dielectric and biological properties and their relationships. The article emphasized primarily extracting the dielectric constant ($$\epsilon _r)$$ ϵ r ) of the specimens (that lay in the range of 3–65) and related them to microstructural properties like the grain size and at.% of BST. A broad outlook on the importance of $$\epsilon _r$$ ϵ r in determining the suitability of bioceramics for clinical applications is presented. Bioactivity analysis of the specimens led to probing the surface charges (that were negative), and it was found crucial to the growth of dense apatite layers. Furthermore, the cytocompatibility of the specimens displayed cell viability above 100% for Day 1, which increased substantially for Day 3. To reveal other biological properties of the composites, protein adsorption studies using bovine serum albumin (BSA) and fetal bovine serum (FBS) was carried out. Electrostatic interactions govern the adsorption, and the mathematical dependence on surface charges is linear. The protein adsorption is also linearly correlated with the $$\epsilon _r$$ ϵ r , intrinsic to the biomaterials. We delve deeper into protein–biomaterials interactions by considering the evolution of the secondary structure of BSA adsorbed into the specimens. Based on the investigations, 20 at.% HAP–80 at.% BST (20H–80B) was established as a suitable composite comprising the desired features of HAP and BST. Such explorations of electrical and biological properties are interesting for modulating the behavior of bioceramic composites. The results project the suitability of 20H–80B for designing electrically active smart scaffolds for the proposed biomedical applications and are expected to incite further clinical trials.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3