Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins

Author:

Perzanowska Olga,Majewski Maciej,Strenkowska Malwina,Głowala Paulina,Czarnocki-Cieciura Mariusz,Mazur Maciej,Kowalska Joanna,Jemielity Jacek

Abstract

AbstractGold nanoparticles (AuNPs) decorated with biologically relevant molecules have variety of applications in optical sensing of bioanalytes. Coating AuNPs with small nucleotides produces particles with high stability in water, but functionality-compatible strategies are needed to uncover the full potential of this type of conjugates. Here, we demonstrate that lipoic acid-modified dinucleotides can be used to modify AuNPs surfaces in a controllable manner to produce conjugates that are stable in aqueous buffers and biological mixtures and capable of interacting with nucleotide-binding proteins. Using this strategy we obtained AuNPs decorated with 7-methylguanosine mRNA 5’ cap analogs and showed that they bind cap-specific protein, eIF4E. AuNPs decorated with non-functional dinucleotides also interacted with eIF4E, albeit with lower affinity, suggesting that eIF4E binding to cap-decorated AuNPs is partially mediated by unspecific ionic interactions. This issue was overcome by applying lipoic-acid-Tris conjugate as a charge-neutral diluting molecule. Tris-Lipo-diluted cap-AuNPs conjugates interacted with eIF4E in fully specific manner, enabling design of functional tools. To demonstrate the potential of these conjugates in protein sensing, we designed a two-component eIF4E sensing system consisting of cap-AuNP and 4E-BP1-AuNP conjugates, wherein 4E-BP1 is a short peptide derived from 4E-BP protein that specifically binds eIF4E at a site different to that of the 5’ cap. This system facilitated controlled aggregation, in which eIF4E plays the role of the agent that crosslinks two types of AuNP, thereby inducing a naked-eye visible absorbance redshift. The reported AuNPs-nucleotide conjugation method based on lipoic acid affinity for gold, can be harnessed to obtain other types of nucleotide-functionalized AuNPs, thereby paving the way to studying other nucleotide-binding proteins.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3