Gaussian Aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images

Author:

Subha B.,Jeyakumar Vijay,Deepa S. N.

Abstract

AbstractDegenerative musculoskeletal disease known as Osteoarthritis (OA) causes serious pain and abnormalities for humans and on detecting at an early stage, timely treatment shall be initiated to the patients at the earliest to overcome this pain. In this research study, X-ray images are captured from the humans and the proposed Gaussian Aquila Optimizer based Dual Convolutional Neural Networks is employed for detecting and classifying the osteoarthritis patients. The new Gaussian Aquila Optimizer (GAO) is devised to include Gaussian mutation at the exploitation stage of Aquila optimizer, which results in attaining the best global optimal value. Novel Dual Convolutional Neural Network (DCNN) is devised to balance the convolutional layers in each convolutional model and the weight and bias parameters of the new DCNN model are optimized using the developed GAO. The novelty of the proposed work lies in evolving a new optimizer, Gaussian Aquila Optimizer for parameter optimization of the devised DCNN model and the new DCNN model is structured to minimize the computational burden incurred in spite of it possessing dual layers but with minimal number of layers. The knee dataset comprises of total 2283 knee images, out of which 1267 are normal knee images and 1016 are the osteoarthritis images with an image of 512 × 512-pixel width and height respectively. The proposed novel GAO-DCNN system attains the classification results of 98.25% of sensitivity, 98.93% of specificity and 98.77% of classification accuracy for abnormal knee case–knee joint images. Experimental simulation results carried out confirms the superiority of the developed hybrid GAO-DCNN over the existing deep learning neural models form previous literature studies.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3