Author:
Tang Jiawei,Huang Zhiwen,Zhu Yidan,Zhu Jianmin
Abstract
AbstractAiming at the problem of poor transient performance of the control system caused by the control uncertainty of the undertrained neural network, a neural network compensation control method based on fuzzy inference is proposed in this paper. The method includes three control substructures: fuzzy inference block, neural network control block and basic control block. The fuzzy inference block adaptively adjusts the neural network compensation control quantity according to the control error and the error rate of change, and adds a dynamic adjustment factor to ensure the control quality at the initial stage of network learning or at the moment of signal transition. The neural network control block is composed of an identifier and a controller with the same network structure. After the identifier learns the dynamic inverse model of the controlled object online, its training parameters are dynamically copied to the controller for real-time compensation control. The basic control block uses a traditional PID controller to provide online learning samples for the neural network control block. The simulation and experimental results of the position control of the magnetic levitation ball show that the proposed method significantly reduces the overshoot and settling time of the control system without sacrificing the steady-state accuracy of neural network compensation control, and has good transient and steady-state performance and strong robustness simultaneously.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Chen, M. Y., Tsai, C. F. & Fu, L. C. A novel design and control to improve positioning precision and robustness for a planar maglev system. J. IEEE Trans. Ind. Electron. 66(6), 4860–4869 (2018).
2. de Jesús Rubio, J. et al. Modeling and control with neural networks for a magnetic levitation system. J. Neurocomput. 227, 113–121 (2017).
3. Spałek, D. Levitation of conductive and magnetically anisotropic ball. J. IEEE Trans. Magn. 55(3), 1–7 (2019).
4. Klaučo, M., Kaluz, M. & Kvasnica, M. Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system. J. Control Eng. Pract. 60, 99–105 (2017).
5. Sain, D. Real-time implementation and performance analysis of robust 2-DOF PID controller for Maglev system using pole search technique. J. Ind. Inf. Integr. 15, 183–190 (2019).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献