Experimental analyzing the effect of n-heptane concentration and angular frequency on the viscoelastic behavior of crude oil containing asphaltene

Author:

Fazeli Mohammadjavad,Escrochi Mehdi,Hosseini Zohreh Sadat,Vaferi Behzad

Abstract

AbstractAsphaltene often produces problems in upstream and downstream sections of crude oil transportation and processing equipment. These issues are directly related to the asphaltene precipitation in transportation pipelines, separation columns, heat exchangers, and storage tanks. This research investigates the impact of angular frequency and n-heptane concentration on asphaltene precipitation and rheological behavior of two oil samples from the Mansouri oil field in Iran, i.e., 23 and 71. The viscosity tests revealed that these oil samples and their mixtures with n-heptane exhibit Newtonian behavior. Moreover, increasing the n-heptane concentration increases the asphaltene precipitation and dramatically decreases crude oil viscosity. The frequency tests revealed that the presence of n-heptane has an unfavorable effect on crude oil’s viscoelastic behavior. Therefore, it is necessary to find the optimum range of angular frequency and n-heptane concentration to minimize the asphaltene content of crude oil and provide them with appropriate viscoelastic behavior. Increasing the angular frequency continuously increases all oil samples’ loss modulus and strengthens their liquid-like manner. The experimental results confirmed that the angular frequency higher than 33.6 rad/s and 75% volume concentration of n-heptane is the best condition for the oil sample of 23. On the other hand, the angular frequency higher than 23.4 rad/s and 75% volume concentration of n-heptane is the best condition for the oil sample of 71. In these conditions, the oil samples of 23 and 71 not only have appropriate viscoelastic behavior, but they also experience 97.2% and 96.3% reductions in their viscosity, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3