Quantitative gait analysis of idiopathic normal pressure hydrocephalus using deep learning algorithms on monocular videos

Author:

Jeong Sungmoon,Yu Hosang,Park Jaechan,Kang Kyunghun

Abstract

AbstractA vision-based gait analysis method using monocular videos was proposed to estimate temporo-spatial gait parameters by leveraging deep learning algorithms. This study aimed to validate vision-based gait analysis using GAITRite as the reference system and analyze relationships between Frontal Assessment Battery (FAB) scores and gait variability measured by vision-based gait analysis in idiopathic normal pressure hydrocephalus (INPH) patients. Gait data from 46 patients were simultaneously collected from the vision-based system utilizing deep learning algorithms and the GAITRite system. There was a strong correlation in 11 gait parameters between our vision-based gait analysis method and the GAITRite gait analysis system. Our results also demonstrated excellent agreement between the two measurement systems for all parameters except stride time variability after the cerebrospinal fluid tap test. Our data showed that stride time and stride length variability measured by the vision-based gait analysis system were correlated with FAB scores. Vision-based gait analysis utilizing deep learning algorithms can provide comparable data to GAITRite when assessing gait dysfunction in INPH. Frontal lobe functions may be associated with gait variability measurements using vision-based gait analysis for INPH patients.

Funder

Biomedical Research Institute grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3