Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models

Author:

Abdi Jafar,Hadavimoghaddam Fahimeh,Hadipoor Masoud,Hemmati-Sarapardeh Abdolhossein

Abstract

AbstractIn recent years, metal organic frameworks (MOFs) have been distinguished as a very promising and efficient group of materials which can be used in carbon capture and storage (CCS) projects. In the present study, the potential ability of modern and powerful decision tree-based methods such as Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) was investigated to predict carbon dioxide adsorption by 19 different MOFs. Reviewing the literature, a comprehensive databank was gathered including 1191 data points related to the adsorption capacity of different MOFs in various conditions. The inputs of the implemented models were selected as temperature (K), pressure (bar), specific surface area (m2/g) and pore volume (cm3/g) of the MOFs and the output was CO2 uptake capacity (mmol/g). Root mean square error (RMSE) values of 0.5682, 1.5712, 1.0853, and 1.9667 were obtained for XGBoost, CatBoost, LightGBM, and RF models, respectively. The sensitivity analysis showed that among all investigated parameters, only the temperature negatively impacts the CO2 adsorption capacity and the pressure and specific surface area of the MOFs had the most significant effects. Among all implemented models, the XGBoost was found to be the most trustable model. Moreover, this model showed well-fitting with experimental data in comparison with different isotherm models. The accurate prediction of CO2 adsorption capacity by MOFs using the XGBoost approach confirmed that it is capable of handling a wide range of data, cost-efficient and straightforward to apply in environmental applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3