New design of high-power in-motion inductive charger for low power pulsation

Author:

Shaier Ahmed A.,Mohamed Ahmed A. S.,Metwally Hamid,Selem Sameh I.

Abstract

AbstractThe magnetic coupler is the most vital component for charging EV wirelessly. Through it, the output power can be transported from the transmitter to the receiver by means of electromagnetic fields. Therefore, this manuscript presents a proposed design of a magnetic coupler in the form of Double-D (DD) on both sides, which is suitable for in-motion inductive charging. This charger is capable of transferring power of 200-kW through an airgap of 250 mm with an efficiency of 91.88% and an operating frequency of 85 kHz. Computational modeling is conducted to obtain the magnetic coupler and the compensation parameters of the proposed system. The appropriate dimensions of the coils, magnetic and metallic shielding are obtained by using the finite element model (FEM). The effect of misalignments on the self and mutual inductances of the two coils (Lp, Ls, M), the output power (Po), and the transmission efficiency (η) is studied in case of one and two coils at transmitter side. The output power in the distance between the two transmitter coils (d) is improved by controlling the operating frequency, adding magnetizable concrete (MC), or both together. These techniques have proven effectiveness in improving the output power by 45.15% for small d and 72.51% for large d. In addition, the efficiency improved by 15.95% for small d and 60.76% for large d. Moreover, these improvement cases were compared in terms of size, weight and cost for a 100-m driving track.

Funder

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Zagazig University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3