Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers

Author:

Aung Max T.,Yu Youfei,Ferguson Kelly K.,Cantonwine David E.,Zeng Lixia,McElrath Thomas F.,Pennathur Subramaniam,Mukherjee Bhramar,Meeker John D.

Abstract

AbstractEndogenous signaling molecules derived from lipids, peptides, and DNA, are important regulators of physiological processes during pregnancy. The effect of their collective impact on preterm birth (delivery < 37 weeks gestation) is understudied. We aimed to characterize the associations and predictive capacity of an extensive panel of eicosanoids, immune biomarkers, oxidative stress markers, and growth factors towards preterm birth and its subtypes. We conducted a cross-sectional study of pregnant women (recruited < 15 weeks gestation) in the LIFECODES birth cohort, which included 58 cases of preterm birth and 115 controls that delivered term. Among the cases there were 31 cases who had a spontaneous preterm birth (cases who had spontaneous preterm labor and/or preterm premature rupture of membranes) and 25 that had preterm birth associated with aberrant placentation (cases who had preeclampsia and/or intrauterine growth restriction) and 2 cases that could not be sufficiently categorized as either. We analyzed single biomarker associations with each preterm birth outcome using multiple logistic regression. Adaptive elastic-net was implemented to perform a penalized multiple logistic regression on all biomarkers simultaneously to identify the most predictive biomarkers. We then organized biomarkers into biological groups and by enzymatic pathways and applied adaptive elastic-net and random forest to evaluate the accuracy of each group for predicting preterm birth cases. The majority of associations we observed were for spontaneous preterm birth, and adaptive elastic-net identified 5-oxoeicosatetraenoic acid, resolvin D1, 5,6-epoxy-eicsatrienoic acid, and 15-deoxy-12,14-prostaglandin J2 as most predictive. Overall, lipid biomarkers performed the best at separating cases from controls compared to other biomarker categories (adaptive elastic-net AUC = 0.78 [0.62, 0.94], random forest AUC = 0.84 [0.72, 0.96]). Among the enzymatic pathways that differentiate eicosanoid metabolites, we observed the highest prediction of overall preterm birth by lipoxygenase metabolites using random forest (AUC = 0.83 [0.69, 0.96]), followed by cytochrome p450 metabolites using adaptive elastic-net (AUC = 0.74 [0.52, 0.96]). In this study we translate biological hypothesis into the language of modern machine learning. Many lipid biomarkers were highly associated with overall and spontaneous preterm birth. Among eicosanoids, lipoxygenase and cytochrome p450 products performed best in identifying overall and spontaneous preterm birth. The combination of lipid biomarkers may have good utility in clinical settings to predict preterm birth.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3