First demonstration of machine-designed ultra-flat, low-cost directive antenna

Author:

Zucchi MarcelloORCID,Giordanengo GiorgioORCID,Righero MarcoORCID,Vecchi GiuseppeORCID

Abstract

AbstractIn this paper, we present a fully automated procedure for the direct design of a novel class of single-feed flat antennas with patterning of a conductive surface. We introduce a convenient surface discretization, based on hexagonal cells, and define an appropriate objective function, including both gain and input matching requirements. The reference geometry is constituted by a very thin, single feed-point square panel. It features a backing metal plate (“ground”) and a top conductive layer, which is automatically patterned to achieve the desired radiation and input matching properties. The process employs an evolutionary algorithm combined with a boundary element electromagnetic solver. By applying this method, we designed an antenna tailored to the 2.4 GHz ISM frequency band, with a size of $$24\,\hbox {cm} \times 24\,\hbox {cm}$$24cm×24cm, i.e., $$2 \times 2$$2×2 wavelengths and an height of 4 mm, or 0.03 wavelengths. Measured data confirmed the expected high gain (13 dBi), with a remarkable aperture efficiency (higher than 50%, including losses), thus validating the proposed approach.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human- and Machine Design: Resonant-Size Antennas;2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI);2023-07-23

2. Quantum Genetic Algorithm for the Design of Miniaturized and Reconfigurable IoT Antennas;IEEE Transactions on Antennas and Propagation;2023-05

3. Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities;Symmetry;2023-01-31

4. Metamaterial Structure Based Dual-Band Antenna for WLAN;IEEE Photonics Journal;2022-04

5. Circular wire-bundle superscatterer;Journal of Quantitative Spectroscopy and Radiative Transfer;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3