Photoplethysmogram based vascular aging assessment using the deep convolutional neural network

Author:

Shin Hangsik,Noh Gyujeong,Choi Byung-Moon

Abstract

AbstractArterial stiffness due to vascular aging is a major indicator during the assessment of cardiovascular risk. In this study, we propose a method for age estimation by applying deep learning to a photoplethysmogram (PPG) for the non-invasive assessment of the vascular age. The proposed deep learning-based age estimation model consists of three convolutional layers and two fully connected layers, and was developed as an explainable artificial intelligence model with Grad-Cam to explain the contribution of the PPG waveform characteristic to vascular age estimation. The deep learning model was developed using a segmented PPG by pulse from a total of 752 adults aged 20–89 years, and the performance was quantitatively evaluated using the mean absolute error, root-mean-squared-error, Pearson’s correlation coefficient, and coefficient of determination between the actual and estimated ages. As a result, a mean absolute error of 8.1 years, root mean squared error of 10.0 years, correlation coefficient of 0.61, and coefficient of determination of 0.37, were obtained. A Grad-Cam, used to determine the weight that the input signal contributes to the result, was employed to verify the contribution to the age estimation of the PPG segment, which was high around the systolic peak. The results of this study suggest that a convolutional-neural-network-based explainable artificial intelligence model outperforms existing models without an additional feature detection process. Moreover, it can provide a rationale for PPG-based vascular aging assessment.

Funder

Ministry of Education, South Korea

Ministry of Health and Welfare, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3