Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability

Author:

Deng Lele,Guo Shenglian,Yin Jiabo,Zeng Yujie,Chen Kebing

Abstract

AbstractThe hydrological cycle, affected by climate change and rapid urbanization in recent decades, has been altered to some extent and further poses great challenges to three key factors of water resources allocation (i.e., efficiency, equity and sustainability). However, previous studies usually focused on one or two aspects without considering their underlying interconnections, which are insufficient for interaction cognition between hydrology and social systems. This study aims at reinforcing water management by considering all factors simultaneously. The efficiency represents the total economic interests of domesticity, industry and agriculture sectors, and the Gini coefficient is introduced to measure the allocation equity. A multi-objective water resources allocation model was developed for efficiency and equity optimization, with sustainability (the river ecological flow) as a constraint. The Non-dominated sorting genetic algorithm II (NSGA-II) was employed to derive the Pareto front of such a water resources allocation system, which enabled decision-makers to make a scientific and practical policy in water resources planning and management. The proposed model was demonstrated in the middle and lower Han River basin, China. The results indicate that the Pareto front can reflect the conflicting relationship of efficiency and equity in water resources allocation, and the best alternative chosen by cost performance method may provide rich information as references in integrated water resources planning and management.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3