Observing and modeling long-term persistence of P. noctiluca in coupled complementary marine systems (Southern Tyrrhenian Sea and Messina Strait)

Author:

Bergamasco A.,Cucco A.,Guglielmo L.,Minutoli R.,Quattrocchi G.,Guglielmo R.,Palumbo F.,Pansera M.,Zagami G.,Vodopivec M.,Malej A.,A.Granata

Abstract

AbstractIn the Mediterranean Sea, the Strait of Messina (MS) is a very peculiar area, connecting highly different regions and representing a privileged observatory for an early comprehension and assessment of ecosystems shifts. It is hypothesized that the outbreaks observed near the coast of many sites in the Mediterranean Sea may be the result of transport of permanent populations of P. noctiluca in pelagic waters to the coast, caused by specific hydrodynamic conditions. By both visual observations and numerical experiments our objective is twofold: (A) to help clarify whether the basin of the Aeolian Islands Archipelago (AIA), in the Southern Tyrrhenian Sea (STS), may be the site from which large populations of P. noctiluca are transported to the MS, and (B) to evaluate whether the upwelling turbulent system of the MS can be an energetic opportunity for this species. It should offer a rich habitat without jeopardizing the overall survival of the population, that is subject to stranding due to strong currents. Although very different, the two involved ecosystems (AIA and MS ) are complementary for the success of Pelagia noctiluca life cycle. Outputs obtained by coupling the 3D hydrodynamic model (SHYFEM) with a Lagrangian particle tracking model support the hypothesis of a connectivity between these two ecosystems, particularly in the first half of the year, indicating the coastal areas around the AIA as potential optimal source location for Pelagia larval stages. We support the very attractive hypothesis that two connected systems exist, the former one favours Pelagia's reproduction and acts as a nursery and the latter favours its growth due to higher productivity. We speculate that the reproductive population of the AIA is not permanent, but is renewed every year by individuals who have fed and quickly grown in the MS and who are passively transported by downwelling along canyon "corridors".

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3