Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study

Author:

Basalay Maryna V.,Wiart Marlene,Chauveau Fabien,Dumot Chloe,Leon Christelle,Amaz Camille,Bolbos Radu,Cash Diana,Kim Eugene,Mechtouff Laura,Cho Tae-Hee,Nighoghossian Norbert,Davidson Sean M.,Ovize Michel,Yellon Derek M.ORCID

Abstract

AbstractReperfusion is the only existing strategy for patients with acute ischemic stroke, however it causes further brain damage itself. A feasible therapy targeting reperfusion injury is remote ischemic conditioning (RIC). This was a two-centre, randomized, blinded international study, using translational imaging endpoints, aimed to examine the neuroprotective effects of RIC in ischemic stroke model. 80 male rats underwent 90-min middle cerebral artery occlusion. RIC consisted of 4 × 5 min cycles of left hind limb ischemia. The primary endpoint was infarct size measured on T2-weighted MRI at 24 h, expressed as percentage of the area-at-risk. Secondary endpoints were: hemispheric space-modifying edema, infarct growth between per-occlusion and 24 h MRI, neurofunctional outcome measured by neuroscores. 47 rats were included in the analysis after applying pre-defined inclusion criteria. RIC significantly reduced infarct size (median, interquartile range: 19% [8%; 32%] vs control: 40% [17%; 59%], p = 0.028). This effect was still significant after adjustment for apparent diffusion coefficient lesion size in multivariate analysis. RIC also improved neuroscores (6 [3; 8] vs control: 9 [7; 11], p = 0.032). Other secondary endpoints were not statistically different between groups. We conclude that RIC in the setting of acute ischemic stroke in rats is safe, reduces infarct size and improves functional recovery.

Funder

Hatter Foundation

NIHR-BRC

RHU MARVELOUS of University Claude Bernard Lyon

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3