A machine learning approach for vocal fold segmentation and disorder classification based on ensemble method

Author:

Nobel S. M. Nuruzzaman,Swapno S. M. Masfequier Rahman,Islam Md. Rajibul,Safran Mejdl,Alfarhood Sultan,Mridha M. F.

Abstract

AbstractIn the healthcare domain, the essential task is to understand and classify diseases affecting the vocal folds (VFs). The accurate identification of VF disease is the key issue in this domain. Integrating VF segmentation and disease classification into a single system is challenging but important for precise diagnostics. Our study addresses this challenge by combining VF illness categorization and VF segmentation into a single integrated system. We utilized two effective ensemble machine learning methods: ensemble EfficientNetV2L-LGBM and ensemble UNet-BiGRU. We utilized the EfficientNetV2L-LGBM model for classification, achieving a training accuracy of 98.88%, validation accuracy of 97.73%, and test accuracy of 97.88%. These exceptional outcomes highlight the system’s ability to classify different VF illnesses precisely. In addition, we utilized the UNet-BiGRU model for segmentation, which attained a training accuracy of 92.55%, a validation accuracy of 89.87%, and a significant test accuracy of 91.47%. In the segmentation task, we examined some methods to improve our ability to divide data into segments, resulting in a testing accuracy score of 91.99% and an Intersection over Union (IOU) of 87.46%. These measures demonstrate skill of the model in accurately defining and separating VF. Our system’s classification and segmentation results confirm its capacity to effectively identify and segment VF disorders, representing a significant advancement in enhancing diagnostic accuracy and healthcare in this specialized field. This study emphasizes the potential of machine learning to transform the medical field’s capacity to categorize VF and segment VF, providing clinicians with a vital instrument to mitigate the profound impact of the condition. Implementing this innovative approach is expected to enhance medical procedures and provide a sense of optimism to those globally affected by VF disease.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3