Author:
Márton Zsuzsanna,Szabó Beáta,Vad Csaba F.,Pálffy Károly,Horváth Zsófia
Abstract
AbstractTemporary ponds are among the most sensitive aquatic habitats to climate change. Their microbial communities have crucial roles in food webs and biogeochemical cycling, yet how their communities are assembled along environmental gradients is still understudied. This study aimed to reveal the environmental drivers of diversity (OTU-based richness, evenness, and phylogenetic diversity) and community composition from a network of saline temporary ponds, soda pans, in two consecutive spring seasons characterized by contrasting weather conditions. We used DNA-based molecular methods to investigate microbial community composition. We tested the effect of environmental variables on the diversity of prokaryotic (Bacteria, Cyanobacteria) and microeukaryotic functional groups (ciliates, heterotrophic flagellates and nanoflagellates, fungi, phytoplankton) within and across the years. Conductivity and the concentration of total suspended solids and phosphorus were the most important environmental variables affecting diversity patterns in all functional groups. Environmental conditions were harsher and they also had a stronger impact on community composition in the dry spring. Our results imply that these conditions, which are becoming more frequent with climate change, have a negative effect on microbial diversity in temporary saline ponds. This eventually might translate into community-level shifts across trophic groups with changing local conditions with implications for ecosystem functioning.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Magyarország Kormánya
Janos Bolyai Research Scholarship, Hungarian Academy of Sciences
Bolyai+ Grant
ELKH Centre for Ecological Research
Publisher
Springer Science and Business Media LLC
Reference97 articles.
1. Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. In Pond Conservation in Europe (eds Oertli, B. et al.) 1–6 (Springer Netherlands, 2007).
2. Olmo, C. et al. The environmental framework of temporary ponds: A tropical-Mediterranean comparison. CATENA 210, 105845 (2022).
3. Griffiths, R. A. Temporary ponds as amphibian habitats. Aquat. Conserv. Mar. Freshw. Ecosyst. 7, 119–126 (1997).
4. Boix, D. et al. Conservation of temporary wetlands. In Encyclopedia of the World’s Biomes 279–294 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12003-2.
5. Fritz, K. A. & Whiles, M. R. Reciprocal subsidies between temporary ponds and riparian forests. Limnol. Oceanogr. 66, 3149–3161 (2021).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献