Cobalt isatin-Schiff-base derivative of MOF as a heterogeneous multifunctional bio-photocatalyst for sunlight-induced tandem air oxidation condensation process

Author:

Rouzifar Majid,Sobhani Sara,Farrokhi Alireza,Sansano José Miguel

Abstract

AbstractA sunlight-induced tandem air oxidation-condensation of alcohols with ortho-substituted anilines or malononitrile for the efficient synthesis of benz-imidazoles/-oxazoles/-thiazoles, or benzylidene malononitrile catalyzed by Co-isatin-Schiff-base-MIL-101(Fe) as a heterogeneous multifunctional bio-photocatalyst is reported. In these reactions, Co-isatin-Schiff-base-MIL-101(Fe) acts both as a photocatalyst, and a Lewis acid to catalyze the reaction of the in-situ formed aldehydes with o-substituted anilines or malononitrile. A significant decrease in the band gap energy and an increase in the characteristic emission of MIL-101(Fe) after functionalization with cobalt Schiff-base according to the DRS analysis and fluorescence spectrophotometry, respectively, indicate that the photocatalytic effectiveness of the catalyst is associated primarily to the synergetic influence of Fe–O cluster and Co-Schiff-base. EPR results obviously pointed out that Co-isatin-Schiff-base-MIL-101(Fe) is capable of creating 1O2 and O2⋅− as active oxygen species under visible light irradiation. Using an inexpensive catalyst, sunlight irradiation, air as a cost-effective and abundant oxidant, and a low amount of the catalyst with recoverability and durability in ethanol as a green solvent, make this methodology as an environmentally friendly process with energy-saving organic synthetic strategies. Furthermore, Co-isatin-Schiff-base-MIL-101(Fe) displays excellent photocatalytic antibacterial activity under sunlight irradiation against E. coli, S. aureus and S. pyogenes. Based on our knowledge, this is the first report of using a bio-photocatalyst for the synthesis of the target molecules.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3