Study on deterioration mechanism of soil in Zhouqiao site under salinization

Author:

Yue Jianwei,Gao Huijie,Zhao Limin,Kong Qingmei,Xu Xiangchun,Wang Zifa,Chen Ying

Abstract

AbstractAlkalinity production is one of the most typical and widespread salinization hazards on the Loess Plateau. Based on the characterization of typical flooding sites and the results of salt monitoring, this study investigates the deterioration mechanism of salinization on Zhouqiao site. The orthogonal test was used to simulate the effects of different concentrations of MgSO4, NaCl and CaCl2 under natural conditions on the quality change, salt analysis out location, surface phenomenon, strength and electrical conductivity of the soil at the Zhouqiao site, and to make a preliminary analysis on the mechanism of saline deterioration of the site soil. The results show that the soil column mass increased significantly under the action of salt, and the rate of salt absorption in the soil column decreased when the critical value was reached, and the critical values were different under the action of different kinds of salts. The rate of salt analysis is also influenced by the salt concentration and the number of cycles, which gradually increases with the increase of salt concentration and the number of cycles. The nominal strength of the soil column with the number of cycles, but occasionally increases. The conductivity increases with the number of cycles, and the magnitude distribution of the conductivity of the soil column under the action of different salts is not exactly the same.

Funder

Discipline Cultivation Project of Henan University

Science and Technology Development Plan of Henan Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3