Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment

Author:

Fu Jian,Xiao Yao,Wang Yu-feng,Liu Zhi-hua,Yang Kejun

Abstract

AbstractA significant proportion of the land area of Heilongjiang Province, China, is composed of saline–alkaline soil, which severely inhibits maize growth. Although Trichoderma treatment is widely regarded as a promising strategy for improving the soil environment and promoting plant growth, the mechanism through which Trichoderma asperellum enhances maize resistance to saline–alkaline stress is not clear. In this study, we explored the effect of T. asperellum application at different concentrations to soil saline–alkaline environment on the seedlings of two maize cultivars, assessing the biochemical parameters related to oxidation resistance. Increasing spore densities of T. asperellum suspension effectively regulated the soil ion balance in the rhizosphere of maize seedlings, reduced the soil pH by 2.15–5.76% and sodium adsorption ratios by 22.70–54.13%, increased soil nutrient content and enzyme activity, and improved the soil environment for seedling growth. Additionally, T. asperellum treatment increased the maize seedling content of osmo-regulating substances and rate of glutathione:oxidised glutathione (43.86–88.25%) and ascorbate:oxidised ascorbate (25.26–222.32%) by affecting the antioxidant enzyme activity in the roots, increasing reactive oxygen species scavenging, and maintaining the osmotic balance and metabolic homeostasis under saline–alkaline stress. T. asperellum also improved the saline–alkaline tolerance of maize seedlings by improving the root growth characteristics. Moreover, results showed that Trichoderma applied at high concentration had the greatest effect. In conclusion, improvement in the saline–alkaline tolerance of maize seedlings by T. asperellum under saline–alkaline soil conditions may be achieved through diverse effects that vary among maize cultivars.

Funder

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education

Heilongjiang Bayi Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3