Multi-class sentiment analysis of urdu text using multilingual BERT

Author:

Khan Lal,Amjad Ammar,Ashraf Noman,Chang Hsien-Tsung

Abstract

AbstractSentiment analysis (SA) is an important task because of its vital role in analyzing people’s opinions. However, existing research is solely based on the English language with limited work on low-resource languages. This study introduced a new multi-class Urdu dataset based on user reviews for sentiment analysis. This dataset is gathered from various domains such as food and beverages, movies and plays, software and apps, politics, and sports. Our proposed dataset contains 9312 reviews manually annotated by human experts into three classes: positive, negative and neutral. The main goal of this research study is to create a manually annotated dataset for Urdu sentiment analysis and to set baseline results using rule-based, machine learning (SVM, NB, Adabbost, MLP, LR and RF) and deep learning (CNN-1D, LSTM, Bi-LSTM, GRU and Bi-GRU) techniques. Additionally, we fine-tuned Multilingual BERT(mBERT) for Urdu sentiment analysis. We used four text representations: word n-grams, char n-grams,pre-trained fastText and BERT word embeddings to train our classifiers. We trained these models on two different datasets for evaluation purposes. Finding shows that the proposed mBERT model with BERT pre-trained word embeddings outperformed deep learning, machine learning and rule-based classifiers and achieved an F1 score of 81.49%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3