Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime

Author:

Yoshihara F.,Ashhab S.,Fuse T.,Bamba M.,Semba K.

Abstract

AbstractWe derive the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction flux qubit inductively coupled to an LC oscillator, and we compare the derived circuit Hamiltonian with the quantum Rabi Hamiltonian, which describes a two-level system coupled to a harmonic oscillator. We show that there is a simple, intuitive correspondence between the circuit Hamiltonian and the quantum Rabi Hamiltonian. While there is an overall shift of the entire spectrum, the energy level structure of the circuit Hamiltonian up to the seventh excited states can still be fitted well by the quantum Rabi Hamiltonian even in the case where the coupling strength is larger than the frequencies of the qubit and the oscillator, i.e., when the qubit-oscillator circuit is in the deep–strong-coupling regime. We also show that although the circuit Hamiltonian can be transformed via a unitary transformation to a Hamiltonian containing a capacitive coupling term, the resulting circuit Hamiltonian cannot be approximated by the variant of the quantum Rabi Hamiltonian that is obtained using an analogous procedure for mapping the circuit variables onto Pauli and harmonic oscillator operators, even for relatively weak coupling. This difference between the flux and charge gauges follows from the properties of the qubit Hamiltonian eigenstates.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3