Fabric soft pneumatic actuators with programmable turing pattern textures

Author:

Tanaka Masato,Song Yuyang,Nomura Tsuyoshi

Abstract

AbstractThis paper presents a novel computational design and fabrication method for fabric-based soft pneumatic actuators (FSPAs) that use Turing patterns, inspired by Alan Turing’s morphogenesis theory. These inflatable structures can adapt their shapes with simple pressure changes and are applicable in areas like soft robotics, airbags, and temporary shelters. Traditionally, the design of such structures relies on isotropic materials and the designer’s expertise, often requiring a trial-and-error approach. The present study introduces a method to automate this process using advanced numerical optimization to design and manufacture fabric-based inflatable structures with programmable shape-morphing capabilities. Initially, an optimized distribution of the material orientation field on the surface membrane is achieved through gradient-based orientation optimization. This involves a comprehensive physical deployment simulation using the nonlinear shell finite element method, which is integrated into the inner loop of the optimization algorithm. This continuous adjustment of material orientations enhances the design objectives. These material orientation fields are transformed into discretized texture patterns that replicate the same anisotropic deformations. Anisotropic reaction-diffusion equations, using diffusion coefficients determined by local orientations from the optimization step, are then utilized to create space-filling Turing pattern textures. Furthermore, the fabrication methods of these optimized Turing pattern textures are explored using fabrics through heat bonding and embroidery. The performance of the fabricated FSPAs is evaluated through three different deformation shapes: C-shaped bending, S-shaped bending, and twisting.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3