Electron-acoustic solitary potential in nonextensive streaming plasma

Author:

Khan Khalid,Algahtani Obaid,Irfan Muhammad,Ali Amir

Abstract

AbstractThe linear/nonlinear propagation characteristics of electron-acoustic (EA) solitons are examined in an electron-ion (EI) plasma that contains negative superthermal (dynamical) electrons as well as positively charged ions. By employing the magnetic hydrodynamic (MHD) equations and with the aid of the reductive perturbation technique, a Korteweg-de-Vries (KdV) equation is deduced. The latter admits soliton solution suffering from the superthermal electrons and the streaming flow. The utility of the modified double Laplace decomposition method (MDLDM) leads to approximate wave solutions associated with higher-order perturbation. By imposing finite perturbation on the stationary solution, and with the aid of MDLDM, we have deduced series solution for the electron-acoustic excitations. The latter admits instability and subsequent deformation of the wave profile and can’t be noticed in the KdV theory. Numerical analysis reveals that thermal correction due to superthermal electrons reduces the dimensionless phase speed $$(\bar{U}_{ph})$$ ( U ¯ ph ) for EA wave. Moreover, a random motion spread out the dynamical electron fluid and therefore, gives rise to $$\bar{U}_{ph}$$ U ¯ ph . A degree enhancement in temperature of superthermal (dynamical) electrons tappers of (increase) the wave steeping and the wave dispersion, enhancing (reducing) the pulse amplitude and the spatial extension of the EA solitons. Interestingly, the approximate wave solution suffers oscillation that grows in time. Our results are important for understanding the coherent EA excitation, associated with the streaming effect of electrons in the EI plasma being relevant to the earth’s magnetosphere, the ionosphere, the laboratory facilities, etc.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Holly, Z. Earth’s Atmospheric Layers. NASA. Retrieved October 23 (2020).

2. Ratcliffe, J. A. An introduction to ionosphere and magnetosphere. CUP Archive (1972).

3. Johannes, G., Gloeckler, G. & Von Steiger, R. Origin of the solar wind from composition data. Space Sci. Rev. 72(1), 49–60 (1995).

4. Piel, A. & Brown, M. Plasma physics: An introduction to laboratory, space, and fusion plasmas. Phys. Today 64(6) (2011).

5. Vasyliunas, V. M. Physics of the Jovian magnetosphere. 11. Plasma distribution and flow. Phys. Jovian Magn. 395–453 (1983).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3